How do polymer chains with different topologies crawl through a cylindrical pore under an elongation flow?

Prof. Chi WU
Department of Chemistry, The Chinese University of Hong Kong

Abstract

For a linear chain, we have, for the first time, observed the discontinuous first-order coil-to-stretch transition; namely, it can pass through a pore much smaller than its unperturbed size only when the flow rate is higher than a critical value ($q_{c,\text{linear}}$) that is independent of the chain length as predicted, but varies with the pore size (D), very different from the prediction. Such a discrepancy is attributed to an improper assumption that each sub-chain (blob) inside the pore is a non-draining hard sphere under a flow. For a star-like chain, we have also, for the first time, revealed that for a given arm length (L_A), $q_{c,\text{star}}$ dramatically increases with the arm number (f); but is nearly independent on L_A for a given f, which is also contradictory to the prediction made by de Gennes and Brochard-Wyart. Therefore, we have to revise their theory in the region $f_{\text{in}} < f_{\text{out}}$, where f_{in} and f_{out} are the numbers of arms inside and outside the pore, respectively; and also accounted for the effective length of each blob [6]. Further, for a hyperbranched chain, we have experimentally unearthed that $q_{c,b}$ depends on the polymerization degree of the entire chain and subchain (N_t and N_b) as $q_{c,b} \sim N_t^\gamma N_b^\phi$, where γ and ϕ are 1.0 and -0.4, much different from the predicted values, which is attributed to the compression of the hyperbranched chain inside the pore and also to different chain conformations when the relative ratio of N_b and D changes for different subchain lengths. After quantitatively understanding how polymer chains with different topologies crawl through a pore, we are now able to cleanly separate them by using their topology instead of size. Finally, we have established a unified description of the critical flow rate for polymer chains with different topologies. During this study, we have developed a novel method to prepare “defect-free” hyperbranched chains; and obtained a number of classic scaling laws for hyperbranched chains, e.g., their average radius ($\langle R \rangle$) is scaled to both N_t and N_b as $\langle R \rangle \sim N_t^{\alpha} N_b^{\beta}$, where $\alpha = 0.46$ and $\beta = 0.11$ for average radius of gyration ($\langle R_g \rangle$); and $\alpha = 0.48$ and $\beta = 0.09$ for the average hydrodynamic radius ($\langle R_h \rangle$), fairly close to the previously predicted 1/2 and 1/10; and the intrinsic viscosity ($[\eta]$) is scaled to both N_t and N_b as $[\eta] = K_\eta N_t^{\nu} N_b^{\mu}$ with $\nu = 0.39$ and $\mu = 0.31$. We also speculate why protein and RNA are linear, not an accident!

Date: 14 May 2014 (Wednesday)
Time: 2:30pm
Venue: Chen Kuan Cheng Forum (LTH)